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Macromolecules are everywhere: they form the material basis of all 

biological structures and processes. Life and all biological processes, the 

occurrences within living cells, within organisms, and their interactions with the 

environment, are all due essentially to the chemistry of macromolecules. Along 

with natural macromolecules such as proteins, DNA, or cellulose we find in 

our modern environment a great number of synthetic macromolecules like 

polyethylene, polysterene, or Teflon. 

When macromolecules are formed out of many, usually identical small 

molecular units, called monomers, then we term them polymers. 

Macromolecules can also be formed when identical or different molecules 

group together to give new units under the influence of intermolecular forces, 

especially Van der Waals forces; one the obtains supermolecules, molecular 

clusters, and inclusion compounds. Molecules can also form larger units 

through covalent binding, yielding supramolecules
When their functions, e.g. in biological systems, can be carried out only through the form 

of these specifically organized macromolecules, they are also called molecular 

functional units.

In molecular physics, small molecules have initially occupied the most 

prominent place for good reasons. The physicist wishes to determine, 

understand and calculate the physical properties of the objects investigated in 

the most precise and complete manner possible. 
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Molecular design and molecular modeling for the large (nano or

polymer, cluster etc.) molecular structures are based on the two

major methods used to describe the interactions within a system

- quantum mechanics and molecular mechanics. These results

could be followed by the techniques that use the same energy

models, including energy minimization, molecular dynamics,

Monte Carlo simulations and conformational analysis. Both in

molecular mechanics and molecular dynamics the molecular

potential energy (and its force field) is represented as the sum of

contributions due to bond stretching, bond bending, energy

changes accompanying internal rotation about single bonds (all

describing the “internal” molecular vibrations, and this part is

closely connected with empirical force field calculations), van der

Waals attractions and repulsions between nonbonded atoms, and

electrostatic interactions due to polar bonds.

QM+MM



15.02.2010 7



15.02.2010 8

For the calculations of vibrational spectra of the large size molecular

systems such as polymers, nanostructures, biological systems, clusters, etc.

the next scheme can be proposed:

1) preliminary quantum mechanical analysis of moderate size

molecules (fragments of large molecular systems) chosen as key or model

molecules ( QM) ;

2) joint treatment of ab initio and experimental data on vibrational

spectra, structural electron diffraction (ED) and microwave (MW) data for model

molecules within the regularization theory, determination the equilibrium

geometry parameters and harmonic force constants (RQMFF);

3) determination of intermolecular potential parameters by means of

stable numerical methods; RIMP

4) organization of a database on structural data, force field parameters

and intermolecular potentials transferable in a series of related compounds;

5) synthesis (construction) of a large molecular system from separate

fragments included in the database and calculation of its vibrational spectra and

thermodynamical functions.

QM + RQMFF +  RIMP
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Vibrational problems 

 Normal coordinate analysis (G. Herzberg, E.B. Wilson, 
M.A.Elyashevich) principal equation

 GFL=L (1)

 presents : 

 (a) direct problem – determination of normal vibration 
frequencies (matrix  ) and forms (amplitude vectors L) 
with known matrix of kinematic coefficients G and matrix 
of force constants F, 

 U is a potential energy, {qij} is a set of generalized 
coordinates.

 (b) inverse problem – force field determination, which 
is obviously ill-posed.

.|}{}{
0

22
qijij qUFF 
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Well-posed and Ill-posed mathematical 

problems (J.Hadamard )

• The problem

• Az=u (1)

• where z and u are some elements of normed spaces Z and U (u is the the set 

of experiwental data, z is  the set of properties of the object to be 

determined); A is an operator establishing the correspondence between z

and u, is called  well-posed if it satisfies the following three conditions:

• 1. it is solvable for any u from U

• 2. the solution of (1) is unique

• 3. the solution is stable with respect to small perturbations of u, i.e. 

results in only small deviations of z.

• In this case one can write z=A-1u (instead of z=Ru, i.e. and inverse operator

exists (R=A-1). Otherwise the problem is ill-posed. The majority of physical

problems belong in mathematical sense to ill-posed problems.
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Variational approach for 
constructing  regularizing 
algorithms

 Consider nonlinear ill-posed problems in finite-
dimensional case and use Tikhonov's approach for
constructing regularizing algorithms (proposed at first
by A.N.Tikhonov and developed later in publications by
A.V.Goncharsky, A.S.Leonov, and A.G.Yagola). Consider
an operator equation



 (1)



 where D is a nonempty set of constraints, Z and U are
finite-dimensional normed spaces, A is a class of
operators from D into U.

UuZDzuAz  ,,
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A general formulation of Tikhonov's 

scheme of constructing a regularizing 

algorithm for solving the main problem:

for the operator Eq. (1) on D find an element z* for which

(2)

We call this problem as the quasisolution problem for Eq. (1). In
the case D=Z problem (2) gives pseudosolution of (1). If the
measure of incompatibility  is equal to zero, then the solutions
of (2) are the solutions of Eq.(1) on D. The quasisolution
problem (2) may be ill-posed. Namely, problem (2) is not
solvable for some equations of the form (1). The solution of (2)
may be nonunique and unstable in the metrics of Z with respect
to perturbations of the data (A, u).

   DzuAzuAz  : min *
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INVERSE VIBRATIONAL PROBLEM

• Problem 1
• It is required to obtain

•

–

• where

• F is unknown force constant matrix, A is nonlinear operator

that corresponds the symmetric F with the set  of all experimental
information available: vibrational frequencies of the molecule (and
its isotopomeres, if available), the Coriolis constants, the mean
square amplitdes, etc. This set of data may be presented as a vector
in finite-duimensional space. Consider matrix F as a vector of finite-
dimensional space Z, consisting either of the elements of the matrix
F or the quantities by means of which this matrix can be
parametrized.

 



AFDFF

FFFn

 ,F : 

  ,minarg 0



In the Tikhonov regularizing procedure, one  can increase the 

stability and accuracy of the calculated solution F by 

using 

• an extended set of experimental data (H,D,T)

• an improved choice of the stabilizer matrix F0 (QM)

• an improved choice of the constraints set D (QM + model)

M[F]=||AhF- ||2 + ||F-F0||2

||F-F0||2   is a stabilizer. 

||- ||,  is an experimental accuracy. h0  is an operator 

error.  -parameter of regularization (generalized discrepancy 

principle)
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• 1. some force constants may be stipulated on a priori grounds to be a zero;

• 2. some force constants may be stipulated to satisfy inequalities aij fij bij ,

where aij, bij -are certain known values;

• 3. some force constants may be stipulated to conform to be equal in a series

of related molecules (or conformers);

• 4. the final solution may be stipulated to conform to Pulay’s scaled force constant

matrix, which may also be considered as a kind of constraint. In this case, set D is

specified as:

• D={F : F=BF0B}, B=diag{1,...,n} (i are the scaling parameters).

D is a given set of a priori constraints (supposed to be closed). 

A set of a priori constraints may arise from several types of 

limitations on force constant values:
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REGULARIZING PROCEDURES FOR SOLVING 

THE GENERAL INVERSE PROBLEM OF 

STRUCTURAL  CHEMISTRY

The model is used to predict experimentally measured values, such as vibrational frequencies

ω, electron diffraction intensity M(s), rotational constants {A, B, C} obtained from

microwave molecular spectra, etc. All of these values are functions of geometric (R) and

force field (F) parameters. With experimental data and parameters represented as elements of

normalized finite-dimensional spaces, we can formulate the problem of simultaneous

refinement of the force field and equilibrium geometry of the molecule as a system of non-

linear equations

on a set of predefined constraints FDF, RDR. This system can be extended to include 

additional experimental evidence when available (for example, data for isotopic species of a 

molecule sharing the same force field and equilibrium geometry).
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Due to experimental errors, lack of experimental data and model limitations, this

system of equations (that can be also treated as a finite-dimensional non-linear

operator equation) usually fails to define unique solution, often proves to be

incompatible and does not provide stability with respect to the errors of input

data. To avoid these unfavorable features characteristic to the ill-posed

problems, it is necessary to implement a regularizing algorithm for its solution.

We suggest to use a regularizing algorithm based on optimization of the

Tikhonov's functional

where in the last ("stabilizer") term F0 and R0 represent parameters of ab initio

force field and equilibrium geometry, respectively. With the appropriate choice

of regularization parameter  (that depends on the experimental errors

characterized by some numerical parameter ), it proves possible to obtain

approximations converging to a normal pseudosolution of the system (1) when

experimental errors tend to zero. These approximations are obtained as

extremals {F,R}of functional (2).



Trans CF3CH2CH2Cl            and                CCl3CH2CH2Cl

CF3CH2CCl3

Synthesis of MFF: transferable force fields
F(CF3-)

F(CCl3-)

F



Perfluorobicyclo[4,4,0]-decane (perfluorodecaline)

trans      cis

C2h C1

Constraints (18 atoms molecules):

Fij=0: 1535(trans) 3029(cis)

Fij
t = Fkl

c :   1040

Joint calculation of force fields:  N(constr) = 5604;  R4095 
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C

C

C

R(C-C)=1.54 Å

R(C=C)=1.39Åβ

α

β

α+β+β=2π

Internal coordinates:

dependent: n=7;  R(C=C), 2R(C-C), α, 2β, χ

independent (3N-6): n=6 (totally, 9 sets)

R(C=C), 2R(C-C), 2β, χ

R(C=C), 2R(C-C), α, β, χ

C

C60:  n(vibs)=60x3-6=172

nf=173x86=14878

Redundant: 270 coords, nf=36585
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INTERMOLECULAR 

INTERACTIONS
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Guanine-Cytosine Base Pair + 8H2O
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INTERMOLECULAR POTENTIAL

For a given spherical potential energy function U(R) the virial

expansion up to the second power of density is written as

2)(  TB
kT

p


where B(T) is the second virial coefficient. It can be obtained

using interaction potential function as

dR
kT

RU

R

U
R

kT
TB 
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or, in equivalent form,
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We have a second virial coefficient measured at different 

temperatures, and calculation of a potential energy function 

is  solving Fredholm integral equation of the forst kind, 

which is an example of typical ill-posed problem 

Equation (2) may be directly treated as nonlinear integral

equation. If functions B(T) and U(R) belong to L2(0,), this

problem is apparently ill-posed and requires certain

regularization technique.

Previous investigations were based on fundamental

properties of the potential function that was assumed

consisting of repulsive term (monotonically decreasing

function for small values of distance R) and attractive term

(negative, monotonically increasing to zero function for

large R). Well-known representatives of such functions are

Lennard-Jones or Morse potentials.



Using restricted set of potential functions

may, however, result in the well-posed

problem for determining U(R) from Eq. (2).
Let us introduce the following set of

constraints D:

Here Rp is some unknown distance. It can be shown that mentioned 

constraints are sufficient to define a compact set in L2 space; this guarantees 

convergence of approximate solutions of Eq. (2) to its exact solution of the 

problem when data errors in B(T) tend to zero. 

) U(R) is convex downwards for R < Rp, and convex upwards for R >Rp; (Rp, -
inflection point)

obviously this form of potential generalizes all known empirical potential

functions;

2) For R>Rp (actually starting with even smaller distances), U(R) is negative,
and monotonically approaches zero as R .
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Solving Eq. (2) may be implemented as finding minimum of the discrepancy

functional

(3)

where B(T) is calculated according to Eq. (2), and are experimentally

measured values. Minimization is subject to constraints D.
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Technically, potential function U(R) was represented on a discrete grid, and
integration in (3) was restricted to the finite interval by introducing Rmin, Rmax
such that input of the omitted intervals was negligible. Discrepancy (3) was

minimized for each value of the parameter Rp from a certain interval, and
parameter yielding minimum discrepancy was chosen as the solution.

An example: CH4 (Exp.: Esper et.al. 1995, Fluid Phase Equilibria, 105, 173)



Use grid: [x1,…xn] on interval (rmin, rmax). Inflection point xnn
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Fig.1 represents solutions of the inverse problem obtained for two cases:

1) When Rp parameter was chosen close to its exact value (5.1 Å);

2) When Rp parameter was seriously in error (7.3 Å).
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Note that the first solution (smooth curve with inflection point at R = 5.1 Å)

practically coincides with the exact solution, because no additional noise was

introduced into input data. However, the second solution (piecewise linear

curve) obtained under assumption that inflection point is located at R = 7.3 Å,

yields practically the same discrepancy value (within 0.1 per cent of the relative

error in the values of B(T)). The exact model data and simulated virial
coefficients corresponding to both potentials (Fig. 1) are compared in the

following Table 1.

T(K) B(model) B(5.1) B(7.3)

232.095 -77.61 -77.55 -77.62

250.000 -67.73 -67.76 -67.73

270.42 -58.41 -58.47 -58.40

290.016 -50.96 -51.01 -50.95

309.718 -44.60 -44.62 -44.59

331.357 -38.64 -38.62 -38.65

350.366 -34.13 -34.05 -34.13
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Methane potentials for different inflection points
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Determination of a methane intermolecular potential model for use in 

molecular simulations from ab initio calculations

J. Chem. Phys. 110, 3368 (1999) Richard L. Rowley, Tapani Pakkanen

The intermolecular interaction potential for the methane

dimer has its minimum at an intermolecular distance of 

4.0 Å

Interaction energies of van der Waals and hydrogen bonded 

systems calculated using density functional theory: Assessing the 

PW91 model

J. Chem. Phys. 114, 3949 (2001); Seiji Tsuzuki, Hans P. Lüthi

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Rowley,+Richard+L.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Pakkanen,+Tapani&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Tsuzuki%2C+Seiji&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&possible1=Luthi%2C+Hans+P.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
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A set of possible potentials for Kr
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A scheme of modeling vibrational spectra of the large size molecular systems

based on stable numerical methods is considered. A new regularizing algorithm

for solving inverse problem of intermolecular potential restoration from

experimental thermodynamic data on second virial coefficient dependent on

temperature, using a priory constraints on convexity and monotonicity of

intermolecular potential, is presented.

Obvious advantage of new approach is a generalization of all known empirical

finite parameter potentials. Mathematical formulation of the problem is reduced

to minimization of a non-quadratic functional on a set of linear constraints

defining a concave-convex potential function with the fixed inflection point.

Position of inflection point is determined using enumerative technique;

functional is minimized by the projection of conjugate gradients method.

CONCLUSIONS


